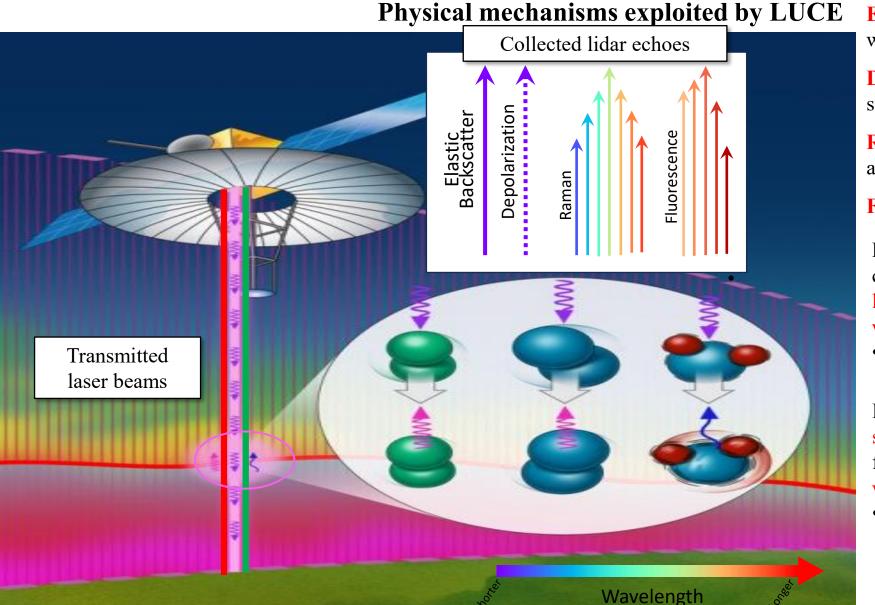


LUCE: Advanced multi-disciplinary space lidar mission for Earth Sciences, primarily focusing on the observation of the atmosphere and oceans, aimed at advancing global knowledge on the coupled atmosphere-ocean-land system.

LUCE is the first spaceborne Raman-elastic-fluorescence lidar, created through an Agenzia Spaziale Italiana (ASI) and National


Aeronautics and Space Administration (NASA) partnership.

DRIVING IDEAS BEHIND THE MISSION

1) exploit all 3 wavelengths (354.7, 532 and 1064 nm) emitted by a Nd:YAG source, instead of throwing one or more into the deep space or in a dump.

2) exploit <u>different atmospheric/surface/oceanic, elastic</u> and <u>anelastic echoes</u>, stimulated with these <u>3 wavelengths</u>.

Elastic scattering: change in light's direction with no change in wavelength

Depolarization: change in light's polarization state

Raman scattering: change in light's direction and wavelength

Fluorescence: re-emission of absorbed light

Raman spectrum: wavelength shifts correspond to the roto-vibrational energy level structure of the scattering species → wavelength shifts are unique fingerprints

 Possibility to collect backscatter echoes from a specific species of interest

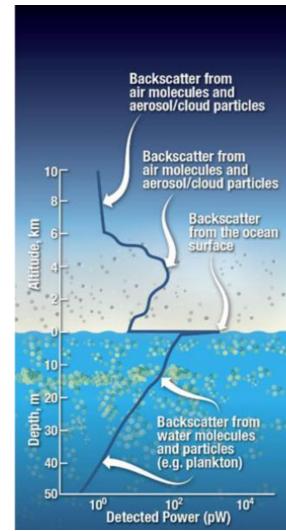
Fluorescence spectrum: wavelength spectrum specific to a species, only some species fluoresce →

wavelength spectrum is a unique fingerprint

Possibility to identify of the particle type

C	Optical	Stimulati	Scattering or re-emission	CHN
H	receiver	ng Tx	mechanism	symbol
N	band(s)	waveleng		
		th(s)		
I	354.8 nm	354.8 nm	Co-polarized elastic signal from	$P_{355\parallel}(z)$
	()		the atmosphere, the ocean, land,	
			and snow-ice surface and the	
			ocean subsurface layers	
II	354.8 nm	354.8 nm	Cross-polarized elastic	P_{355} \perp (z)
	(\bot)		Cross-polarized elastic	
III	532.2 nm	532.2 nm	Co-polarized elastic	$P_{532\parallel}(z)$
	()		Co-polarized clastic	
IV	532.2 nm	532.2 nm	Cross-polarized elastic	$P_{355}\perp$ (z)
	(⊥)		Cross-polarized clastic	
V	1064.4 nm	1064.4	Total elastic	$P_{1064}(z)$
		nm		
VI	402-408	354.8 nm	Water vapor, liquid and ice water	$P_{H2O}(z)$
	nm		roto-vibrational Raman signal	
			from the atmosphere, the ocean,	
			land, and snow-ice surface and	
			the underlying layers	
VII	355.85	354.8 nm	Pure rotational Raman (Anti-	$P_{ref,S/AS}(z)$
	nm,		Stoke and Stokes branches) from	-
	353.95 nm		atmospheric N ₂ and O ₂	
			molecules and water low-freq.	
			vibrational Raman signals from	
			the ocean and snow-ice surface	
VII	675-695	354.8 nm,	P_{FL}	
I	nm	532.2 nm	Chlorophyll fluorescence	,

	Measu	ired geophysic	al variables		: :	:	:	:
Atmospheric observable 1: Vertical profiles of the a	tmospheric particle (ae	erosol/clouds) backscatt	ering coefficient at 354.	7 nm, β ₃₅₅ (z)				
Atmospheric observable 2: Vertical profiles of the a	tmospheric particle (ac	erosol/clouds) backscatt	ering coefficient at 532	nm, β ₅₃₂ (z)				. <u>.</u>
Atmospheric observable 3: Vertical profiles of the a	tmospheric particle (ae	erosol/clouds) backscatt	ering coefficient at 1064	1 nm, β ₁₀₆₄ (z)				i
Atmospheric observable 4: Vertical profiles of the a	tmospheric particle (ac	erosol/clouds) extinction	coefficient at 354.7 nn	n, α ₃₅₅ (z)				
Atmospheric observable 5: Vertical profiles of the a	tmospheric particle (ae	erosol/clouds) depolariz	ation ratio at 354.7 nm,	δ ₃₅₅ (z)				
Atmospheric observable 6: Vertical profiles of the a	tmospheric particle (ae	erosol/clouds) depolariz	ation ratio at 532 nm, δ	32(Z)	1			1
Atmospheric observable 7: Vertical profiles of the a	tmospheric water vapo	our mixing ratio, x _{H2Q} (z)	(over long horizontal ir	ntegration paths)	. i i			. i
Atmospheric observable 8: Vertical profiles of the s	tratospheric and mesos	spheric temperature, T(z) :		: :			1
Atmospheric observable 9: Vertical profiles of the a	tmospheric (aerosol) fl	luorescent coefficient at	685 nm, β _{FL_AER, 685} (z)			:	:	
Oceanic obs. 1: Vertical profiles of oceanic particula	te backscattering coeff	f, at 354.7 nm from wate	r susp. particulate matte	er, including marine p	hytoplankton, b_{b_l}	_355(Z)		
Oceanic obs. 2: Vertical profiles of oceanic particula	te backscattering coeff	f. at 532 nm from water	susp. particulate matter,	including marine phy	ytoplankton, b _{bp_5}	32(Z)	:	i
Oceanic obs. 3: Integrated oceanic particulate backso	cattering coeff. at 354.	7 nm from water susp. p	articulate matter, includ	ing marine phytoplan	akton, $b_{bp_355}(z)$:
Oceanic obs. 4: Integrated oceanic particulate backso	cattering coeff. at 532 i	nm from water susp. par	ticulate matter, includin	ig marine phytoplank	ton, b _{bp_532} (z)			. :
Oceanic obs. 5: Vertical profiles of oceanic particula	te depol. ratio at 354.7	nm from water suspend	led particulate matter, ir	ncluding marine phyto	plankton, δ_{355_000}	E(Z)		1
Oceanic obs. 6: Vertical profiles of oceanic particula	te depol. ratio at 532 n	nm from water suspende	d particulate matter, inc	luding marine phytop	lankton, δ_{532_OCE}	(z)		÷
Oceanic obs. 7: Vertical prof. of oceanic diffuse atter	n. coeff. for downwell,	irrad at 354.7 nm from	water susp. particulate	matter, incl. marine p	hytoplankton, K_d	355(Z)		
Oceanic obs. 8: Vertical profiles of diffuse attenuation	on at 405 nm, , K _{d_405} (z)	9						÷
Oceanic observable 9: Vertical profiles of phytoplan	kton chlorophyll fluor	rescence coefficient at 6	85 nm from the upper o	cean But cut sos(Z)				
Cryosphere observable 1: Snow water equivalent m			i i i	: CHL, 083(-)				
Terrestrial observable 1: Terrestrial plant canopy st			: :	:	i i			1
Terrestrial observable 2: Chlorophyll fluorescence			00 Bra ser 200(2)					. i
		: : :	511, PTL_CHL, 083(2)	:	<u> </u>		:	1
9 Atmospheric observables								i
9 Oceanic observables		21 Total observal	oles with 8 chns					. <u>.</u>
2 Terrestrial observables				:				-
1 Cryosphere observable		1 1	i i	:	1 1	:	:	:

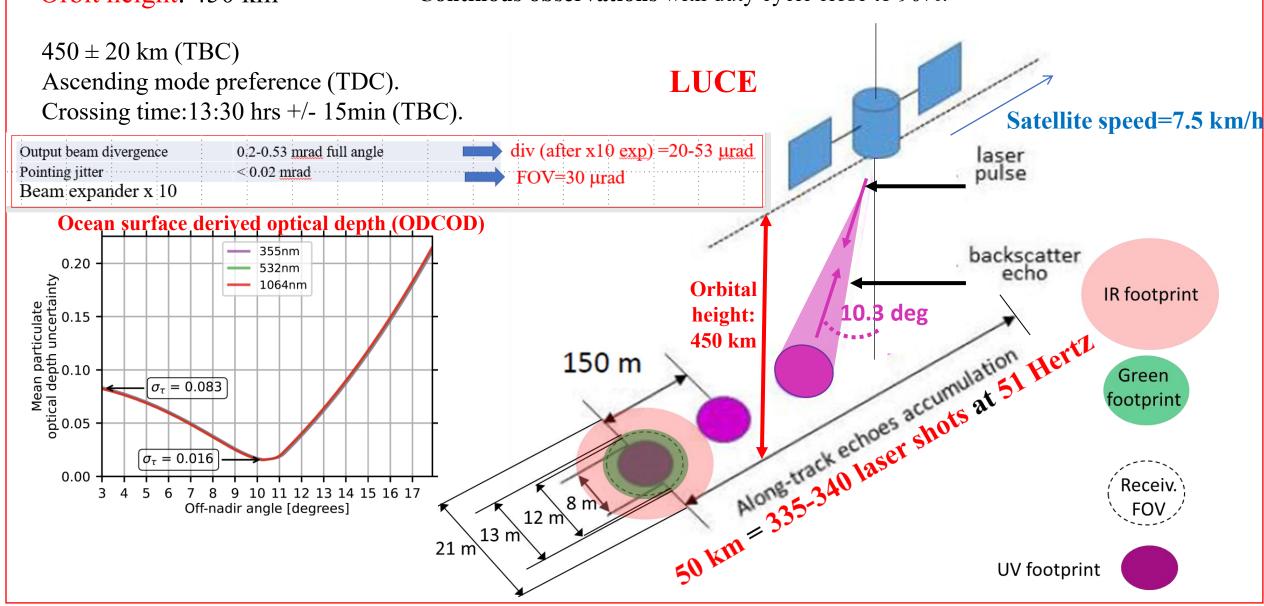

Vertical resolution and extent for the different signals

				Vertical resolution (in air) [m]					
	Range	(km)		Para-Perp	Para-Perp	Total	Rotational	Water	Fluore-
Reference	Upper	Lower	Description	355nm	532nm	1064nm	Raman	Raman	scence
	90	45	Stratosphere & mesosphere	360					
	45	32	Elastic calibration	180	180				
	32	20	Stratosphere	90	90	180	180	360	
MSL	20	8	Troposphere	30	30	30	30	120	120
IVISL	8	5	Liquid clouds, coarse resolution	7.5	30	30	30	120	120
	5	0.20	Liquid clouds, fine resolution	3.75	30	30	30	120	120
	0.20	-0.25	Ocean & ocean surface	1.25	1.25	30	1.25	1.25	1.25
	-0.25	-0.50	Atmosphere below MSL	30	30	30	30	120	120
AGL	0.20	-0.05	Snow & vegetation (land-only)	1.25				1.25	1.25

Extended vertical regions $-0.5 \text{ km} \le z \le 90 \text{ km}$

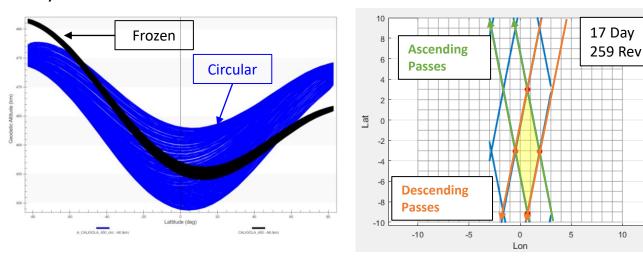
Variable vertical resolutions $1.25 \text{ m} \leq \Delta z \leq 360 \text{ m}$

Dynamic Range

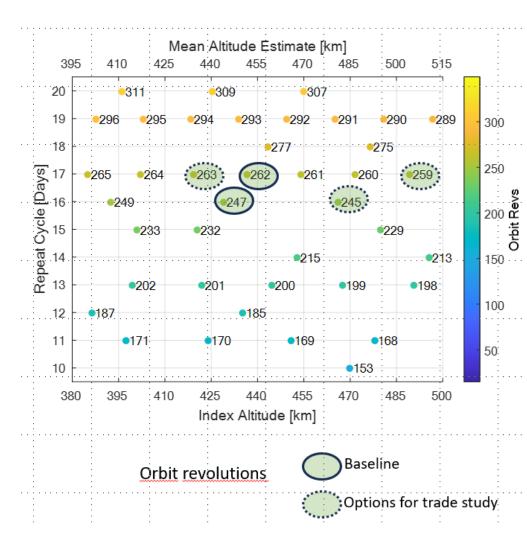

Product	Minimum	Maximum			
$1:P_{355\parallel}$	2.1×10 ⁻⁸ km ⁻¹ sr ⁻¹	3.0 km ⁻¹ sr ⁻¹ and 0.095 sr ⁻¹			
$2:P_{355}$	2.1×10 ⁻⁸ km ⁻¹ sr ⁻¹	3.0 km ⁻¹ sr ⁻¹ and 0.095 sr ⁻¹			
$3:P_{532\parallel}$	$2.4 \times 10^{-6} \mathrm{km^{-1}sr^{-1}}$	4.2 km ⁻¹ sr ⁻¹ and 0.015 sr ⁻¹			
$4:P_{532}$	2.4×10 ⁻⁶ km ⁻¹ sr ⁻¹	4.2 km ⁻¹ sr ⁻¹ and 0.015 sr ⁻¹			
5: <i>P</i> ₁₀₆₄	5.5×10 ⁻⁵ km ⁻¹ sr ⁻¹	2.0 km ⁻¹ sr ⁻¹ and 0.019 sr ⁻¹			
$7: P_{ref}$	1.1×10 ⁻⁷ km ⁻¹ sr ⁻¹	2.0×10 ⁻⁵ km ⁻¹ sr ⁻¹			

SYSTEM GEOMETRY AND ORBIT SELECTION

Sun-syncronous polar orbit


Orbit height: 450 km

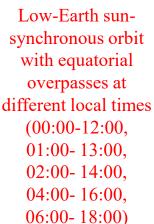
Continous observations with duty cycle close to 90%.

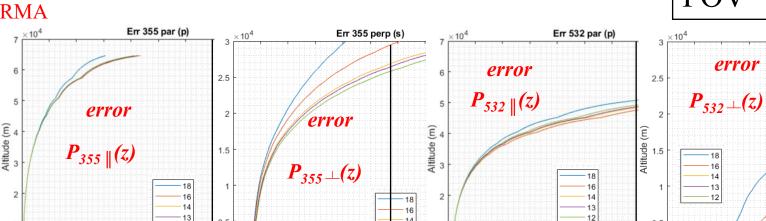


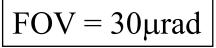
Orbit Selection

 Frozen orbit, instead of circular, with a repeat ground track because this translates into less variation in orbit altitude (more consistent SNR).

- Repeat cycle ≥ 14 days
 all 1-degree grid box contain at least 1 observation
- No repeat cycle in phase the lunar cycle (14-15 day) as this might have unintended sampling consequences
- Suggested repeat cycle of 16 or 17 days



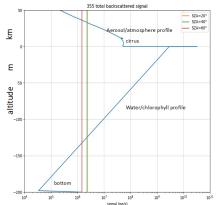

Atmospheric simulation results


Two simulators were developed, one by NASA and one by UNIBAS-ISMAR to assess the performance of LUCE Solar background contribution has been properly accounted for

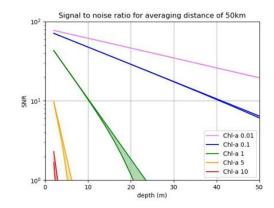
Atmospheric comp. & thermodyn. properties: US Standard model

Aerosol model: ARMA




error

Err 532 perp (s)



A sampling with a horizontal resolution of 50 km (corresponding to a signal averaging over 335 single-shot echoes at 50 Hertz, considering a satellite speed of 7.5 km/h) and a vertical resolution of 200 m (dwell time = 1.33 usec) was considered.

First results of simulated oceanic lidar signals

Column integrated chlorophyll fluorescence SNR for 50 km of horizontal averaging

The Italian Space Agency (ASI), in partnership with NASA, is developing a space lidar system based on the Raman-elastic-fluorescence techniques for Earth observation, with the goal to launch the mission in the time window 2034-2035, with an expected lifetime of 3-5 years.

A Phase A study, commissioned by the Italian Space Agency to Leonardo S.p.A. and focusing of the technological feasibility of the lidar payload, was carried out starting in October 2022 and was bridged in March 2025 into a Phase A/B1 study.

Phase A/B1 activities for the platform and the end-to-end system, commissioned by the Italian Space Agency to Thales Alenia Space, were also started in March 2025.

In December 2024 NASA LaRC started a Phase A/formulation study finalized to the preparation for a System Requirements Review for the development of the detection system and sampling chain and the implementation of data downlink capabilities, with a commitment in the mission guaranteed until September 2026.

The Italian Space Agency is also supporting the Italian Science community involved in the LUCE mission through the funding a dedicated Science project with the main goal of consolidating/reinforcing the Italian science community supporting the mission, with the involvement of scientists from a variety of scientific international institutions.

